US ERA ARCHIVE DOCUMENT

B-1 Combustion Turbine/Duct Burner Emissions Calculations - Unit 10 (VIC10)

EPN: VIC10 Turbine: GE 7FA

Specifications							
Parameter		Value	Unit				
Fuel Type : Natural Gas							
		1,024 Bt	u/scf				
Annual Average Firing Rate:	Turbine	1,816 mr	1,816 mmBtu/hr (HHV)				
	Duct Burners	483 mr	mBtu/hr (HHV)				
	Factor Basis	Emission Facto	or				
CO2 Emission Factor	Part 75 App G	118.9 lb/	mmBtu				
CH4 Emission Factor	Part 98, App C	0.001 kg	/mmBtu				
N2O Emission Factor	Part 98, App C	0.0001 kg	/mmBtu				
Operating Hours	Turbine Full Load	7,760 hr/	'yr				
	Duct Burners	4,375 hr/	'yr				
	MSS	1,000 hr/	'yr				
Note: All mmBtu values are HHV							

	Emission Rates						
Pollutant	tpy	GWP* Factor	CO₂e tpy				
Full Load							
CO2	962,956	1	962,956				
CH4	18	25	447				
N20	2	298	532				
Total CO2e	N/A	N/A	963,935				
MSS							
CO2	107,924	1	107,924				
CH4	5	25	135				
N20	0.2	298	60				
Total CO2e	N/A	N/A	108,118				
Total VIC10							
CO2	1,070,879	1	1,070,879				
CH4	23	25	581				
N20	2	298	592				
Total CO2e	N/A	N/A	1,072,053				

^{*} Table A -1 to Subpart A of Part 98--Global Warming Potentials

Sample Calculations:

CO2 emission factor calculated from constants in Section 2.3 of Appendix G to 40 CFR Part 75 as follows:

CO2 (lb/mmBtu) = 1040 scf/mmbtu x 1 mole/385 scf x 44 lb CO2/mole = 118.9 lb/mmBtu

 $CO2 \ (Full \ Load) = (1,816 \ mmBtu/hr * 7,760 \ hr/yr + 483 \ mmBtu/hr * 4,375 \ hr/yr) * 118.9 \ lb/mmBtu * 1 ton/2000lb = 962,956 \ tpy = 10,000 \ hr/yr + 10,000 \ hr/yr$

CO2 (MSS) = 1,816 mmBtu/hr * 1,000 hr/yr * 118.9 lb/mmBtu * 1ton/2000lb = 107,924 tpy

CO2 (Total) = 962,956 tpy + 107,924 tpy = 1,070,879 tpy

 $CH4 \ (Full \ Load) = (1,816 \ mmBtu/hr * 7,760 \ hr/yr + 483 \ mmBtu/hr * 4,375 \ hr/yr) * 0.001 \ kg/mmBtu * 1000g/kg * 1lb/453.6g * 1ton/2000lb = 18 \ tpy + 1000g/kg * 1lb/453.6g$

CH4 (MSS) = 3.4 tpy + (1,816 mmBtu/hr * 1,000 hr/yr * 0.001 kg/mmBtu * 1000g/kg * 1lb/453.6g * 1ton/2000lb) = 5 tpy

(includes shutdown and maintenance purging)

CH4 (Total) = 18 tpy + 5 tpy = 23 tpy

N2O (Full Load) = (1,816 mmBtu/hr * 7,760 hr/yr + 483 mmBtu/hr * 4,375 hr/yr) * 0.0001 kg/mmBtu * 1000g/kg * 1lb/453.6g * 1ton/2000lb = 2 tpy

N2O (MSS) = 1,816.0 mmBtu/hr * 1,000 hr/yr * 0.0001 kg/mmBtu * 1000g/kg * 1lb/453.6g * 1ton/2000lb = 0.2 tpy

N2O (Total) = 2 tpy + 0.2 tpy = 2 tpy

Total CO2e = 1,070,879 tpy * 1 + 23 tpy * 25 + 2 tpy * 298 = 1,072,053 tpy

Summary of CH₄ Purging Emissions

Purging Event	GHG Annual Emission Rate (tpy)	CO₂e Annual Emission Rate (tpy)	
Shutdown CH ₄ Purging (1)	2.9	73.0	
Maintenance CH ₄ Purging (2)	0.5	11.6	
Total	3.4	84.6	

Notes

- (1) Shutdown process requires limited amounts of CH₄ to be purged via an automatic double block and bleed valve at the CTG and DB System
- (2) Prior to any maintenance event at the CT, the CT and DB lines are vented to the atmosphere, and consequently CH₄ is released.

B-1 Combustion Turbine/Duct Burner Emissions Calculations - Unit 10 (VIC10)

EPN: VIC10 Turbine: GE 7FA

Shutdown CH ₄ Purging										
	Vented System	Volume Purged (cf/event) (1)	Operating Pressure (psig)	Operating Temperature (Degrees F)	Volume Purged (scf/event) (2)	CH ₄ Vented (lb/event) (3)	No. Shutdowns (events/yr) (4)	Warming	GHG Annual Emission Rate (tpy) ⁽⁶⁾	CO₂e Annual Emission Rate (tpy) ⁽⁷⁾
	Combustion Turbine	4.36	425.00	100.00	121.33	5.13	305	25	0.78	19.56
ı	Duct Burner	58.65	30.00	100.00	165.82	7.01	610	25	2.14	53.46

Notes

- (1) Per physical piping measurements of the CTG Main/Pilot Gas Headers and John Zink isometric drawing of the duct burners system
- (2) Volume_{stand cond} (scf/event) = Volume_{operating cond} (cf/event) * P_{operating cond} (psia) / 14.67 psia * 519.67 R / T_{operating cond} (R)
- (3) CH₄ Vented (lb/event) = Volume (scf/event) * 1/Standard Molar Volume (scf/lbmole) * MW_{CH4} (lb/lbmole)

Standard Molar Volume = 379 scf/lbmole

CH₄ Molecular Weight = 16.0 lb/lbmole

- (4) Maximum number of shutdowns requested to be authorized.
- (5) Global Warming Potential per 40 CFR Part 98, Table A-1 to Subpart A.
- (6) GHG Annual Emission Rate (tpy) = CH4 Vented (lb/event) * No. Shutdowns (events/yr) * 1 ton/2,000 lb

GHG Annual Emission Rate for CT = 5.13 lb/event * 305 events/yr * 1 ton / 2,000 lb = 0.78 tpy

(7) CO₂e Annual Emission Rate = GHG Annual Emission Rate (tpy) * Global Warming Potential

CO2e Annual Emission Rate for CT = 0.78 tpy * 25 = 19.56 tpy

Maintenance CH₄ Purging

Vented System	Volume Purged (scf/event) (1)	CH ₄ Vented (lb/event) (2)		Global Warming Potential ⁽⁴⁾	GHG Annual Emission Rate (tpy) ⁽⁵⁾	CO₂e Annual Emission Rate (tpy) ⁽⁶⁾
Combustion Turbine	4,206.96	177.86	5	25	0.44	11.12
Duct Burner	441.47	18.66	2	25	0.02	0.47

Notes

- (1) Process engineering knowledge
- (2) CH₄ Vented (lb/event) = Volume (scf/event) * 1/Standard Molar Volume (scf/lbmole) * MW_{CH4} (lb/lbmole)

Standard Molar Volume = 379 scf/lbmole

CH₄ Molecular Weight = 16.0 lb/lbmole

- (3) Maximum expected maintenance events per year
- (4) Global Warming Potential per 40 CFR Part 98, Table A-1 to Subpart A.
- (5) GHG Annual Emission Rate (tpy) = CH4 Vented (lb/event) * No. Shutdowns (events/yr) * 1 ton/2,000 lb

GHG Annual Emission Rate for CT = 177.86 lb/event * 5 events/yr * 1 ton / 2,000 lb = 0.44 tpy

(6) CO₂e Annual Emission Rate = GHG Annual Emission Rate (tpy) * Global Warming Potential

CO2e Annual Emission Rate for CT = 0.44 tpy * 25 = 11.12 tpy